Geometry Problem 1610: Area of a Curvilinear Triangle in a Rhombus
$$
\begin{array}{l}
\textbf{GIVEN:}\\
\qquad \quad \diamond ABCD \text{ (Green)}, s=6, \angle C=60^\circ. \\
\qquad \quad E \in AC \text{ s.t. } CE=6.\\
\qquad \quad \text{Arc } AB \text{ centered at } D.\\
\\
\textbf{FIND:}\\
\qquad \quad \text{Area}(\Omega), \text{ bounded by } \overline{AE}, \overparen{BE} (\text{center } C), \overparen{AB} (\text{center } D).
\end{array}
$$
Problem Statement
Let \( ABCD \) be a rhombus with side length \( 6 \) and \( \angle BCD = 60^{\circ} \). Let \( \Gamma_1 \) be the circle centered at \( C \) with radius \( CB \), which intersects the diagonal \( AC \) at point \( E \). Let \( \Gamma_2 \) be the circle centered at \( D \) with radius \( DA \).
Determine the area of the curvilinear triangle bounded by the segment \( AE \), the arc \( BE \) of \( \Gamma_1 \), and the arc \( AB \) of \( \Gamma_2 \) that is exterior to triangle \( ABC \).
Geometry Problems Index 2025 (related topics)
Explore more geometric problems involving rhombi, overlapping circles, and area calculations.
Community
View or Post a Solution — Join the Discussion
Problems
Geometry Problems — Latest & Classic
Challenges
Open Problems — For Curious Minds
Visual
Visual Index — Explore by Diagrams
Collection
All Geometry Problems — Complete Archive
Circle
Circles and Arcs
Circles
Intersecting Circles
Circles
Common Chord of Circles
Circles
Circular Segment
Quadrilaterals
Rhombus Properties
Area
Area Calculation Problems
Circles
Circle Area Theorems and Problems
Transformations & Metrics
Congruence, Rotation, Translation, Reflection
Lines & Angles
Special Angles (30, 60, 120)
Triangles
Equilateral Triangle