GoGeometry Problem 586

This solution was submitted by Michael Tsourakakis from Greece

Because there are many circles intersect in pairs will use radical axis theory

 $AB \cap DC = E$, $BC \cap AD = F$

C: Circumcircle of quadrilateral ABCD center O

C1: Circumcircle of triangle ABP, center K1

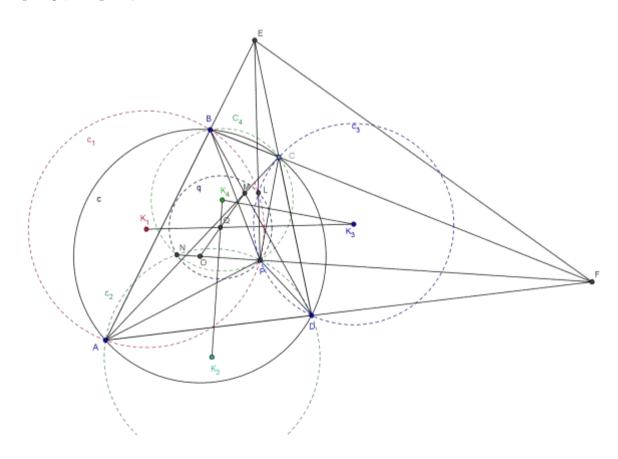
C2: Circumcircle of triangle APD, center K2

C₃: Circumcircle of triangle PDC ,center K₃

C4: Circumcircle of triangle CBP, center K4

q:: Circumcircle of triangle NPL, center Q

$$L=C_1 \cap C_3$$
 , $N=C_2 \cap C_4$



PN is the radical axis of circle C_2 and C_4 . So $\ K_2K_4$ is mediator of PN

PL is the radical axis of circle C₁ and C₃ so K₁K₃ is mediator of PL

If $K_1K_3 \cap K_2K_4 = Q$, Q is the center of Circumcircle (q) of triangle LPN.

Therefore, PL is radical axis of the circles q and C₃ and q and C₁

PN is the radical axis of the circles q and $\,C_2\,$ and q and $\,C_4\,$

ABE is the radical axis of the circle c and C_1 , therefore, $\Delta^E_c = \Delta^E_{c1}$

DCE is the radical axis of the circle c and C_2 , therefore $\Delta^E_c = \Delta^E_{c3}$

So , $\Delta^E_{c1} = \Delta^E_{c3}$. But radical axis of the circles C_1 and C_3 is PL. So, the point E belongs to PL, which is and radical axis of the circles q and C_1 , q and C_3 . Therefore, $\Delta^E_{c} = \Delta^E_{q}$ (1)

Similarly

ADF is the radical axis of the circles c and C_2 , therefore, $\Delta^F_{c} = \Delta^F_{c2}$

BCF is the radical axis of the circles c and C_4 , therefore $\Delta^F_{c} = \Delta^F_{c4}$

So, $\Delta^F_{c2} = \Delta^F_{c4}$. But radical axis of the circles C_2 and C_4 is PN. So, the point F belongs to PN ,which is and radical axis of the circles q and C_2 , q and C_4 . Therefore, $\Delta^F_{c} = \Delta^F_{q}$ (2)

(1),(2) \Rightarrow The points E and F are on radial axis of the circles c and q. So, EF is radical axis of the circles c,q, therefore, OQ \perp EF

The proof will be finished if we prove that $OM \perp$ because in this case, the points O ,Q,M will belong to the same straight

This will prove as an independent problem, in wich I will give very simple solution

Problem

ABCD is cyclic quadrilateral. AC∩BD=M.

c: Circumcircle of quadrilateral ABCD ,center O.

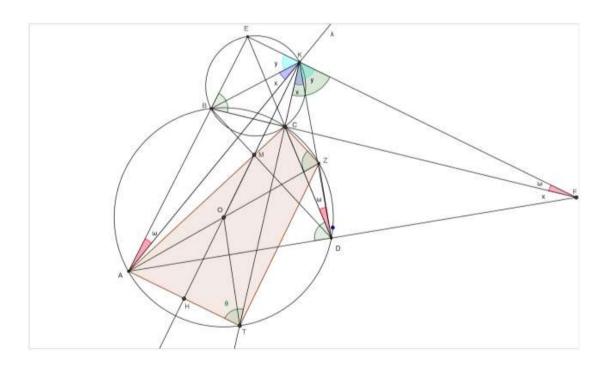
 $AB \cap DC = E$ and $BC \cap AD = F$. To prove that $OM \perp EF$

Proof

the circumcircle of the triangle EBC meets at point K the EF

If AO \cap (c)=Z, and KC \cap (c)=T then \angle ATC= \angle AZC= \angle CDA= \angle CBE= \angle CKF= θ , because ACZT, ACZD, ABCD, BEKC is cyclic quadrilaterals.

Therefore, DCKF is cyclic quadrilateral so, $y = \angle DKF = \angle FCD.But \angle FCD = \angle BAD$ (because, ABCD is cyclic quadrilateral) and $\angle DCF = \angle BCE = \angle BKE = y.So$, BAFK is cyclic quadrilateral



Furthermore , \angle CKD= \angle BFA= \angle BKA=x. So \angle EKA= \angle FK λ =x+y and \angle TKF= θ =x+y. Therefore, the KF is the bisector of \angle TK λ . But \angle KTA= \angle TKF= θ =x+y ,so AT//KF and triangle KAT is isosceles \Rightarrow KA=KT . Furthermore OA=OT . Therefore KMOH is the mediator of AH ,so OM \bot EF

0.ε.δ